File: ca.sh
   1 #!/bin/sh
   2 
   3 # The MIT License (MIT)
   4 #
   5 # Copyright © 2020-2025 pacman64
   6 #
   7 # Permission is hereby granted, free of charge, to any person obtaining a copy
   8 # of this software and associated documentation files (the “Software”), to deal
   9 # in the Software without restriction, including without limitation the rights
  10 # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11 # copies of the Software, and to permit persons to whom the Software is
  12 # furnished to do so, subject to the following conditions:
  13 #
  14 # The above copyright notice and this permission notice shall be included in
  15 # all copies or substantial portions of the Software.
  16 #
  17 # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  20 # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  23 # SOFTWARE.
  24 
  25 
  26 # ca [expressions...]
  27 #
  28 #
  29 # CAlculator is an easier-to-use way of running `bc` (basic calculator) where
  30 #
  31 #   - you can calculate multiple different things in one run
  32 #   - you give the expressions as arguments, while `bc` reads it from stdin
  33 #   - you don't need quoting when avoiding parentheses and spaces
  34 #   - you can use either ** or ^ to raise powers
  35 #   - you can use [ and ] or ( and ) interchangeably
  36 #   - the number of max-accuracy decimals is 25 by default
  37 #   - automatically includes the extended bc math library via option -l
  38 #   - there are several extra predefined values and functions
  39 
  40 
  41 case "$1" in
  42     -h|--h|-help|--help)
  43         awk '/^# +ca /, /^$/ { gsub(/^# ?/, ""); print }' "$0"
  44         exit 0
  45     ;;
  46 esac
  47 
  48 if [ $# -eq 0 ]; then
  49     awk '/^# +ca /, /^$/ { gsub(/^# ?/, ""); print }' "$0"
  50     exit 0
  51 fi
  52 
  53 # default max-accuracy decimals to use for calculations
  54 scale=25
  55 
  56 # ensure each output is all on 1 line, define several funcs and values, then
  57 # inject the expressions given as this script's arguments, transforming them
  58 # according to the rules described above
  59 for arg in "$@"; do
  60     # printf "\e[7m%s\e[0m\n" "${arg}" > /dev/stderr
  61     [ $# -ge 2 ] && printf "\e[7m%s\e[0m\n" "${arg}" > /dev/stderr
  62 
  63     BC_LINE_LENGTH=0 bc -l << ENDOFSCRIPT
  64 scale = ${scale};
  65 
  66 femto = 0.000000000000001;
  67 pico = 0.000000000001;
  68 nano = 0.000000001;
  69 micro = 0.000001;
  70 milli = 0.001;
  71 
  72 kilo = 1000;
  73 mega = 1000 * kilo;
  74 giga = 1000 * mega;
  75 tera = 1000 * giga;
  76 peta = 1000 * tera;
  77 exa =  1000 * peta;
  78 zetta =  1000 * exa;
  79 
  80 binkilo = 1024;
  81 binmega = 1024 * binkilo;
  82 bingiga = 1024 * binmega;
  83 bintera = 1024 * bingiga;
  84 binpeta = 1024 * bintera;
  85 binexa = 1024 * binpeta;
  86 binzetta = 1024 * binexa;
  87 
  88 kb = 1024;
  89 mb = 1024 * kb;
  90 gb = 1024 * mb;
  91 tb = 1024 * gb;
  92 pb = 1024 * tb;
  93 eb = 1024 * pb;
  94 zb = 1024 * eb;
  95 
  96 kib = 1024;
  97 mib = 1024 * kib;
  98 gib = 1024 * mib;
  99 tib = 1024 * gib;
 100 pib = 1024 * tib;
 101 zib = 1024 * pib;
 102 
 103 mol = 602214076000000000000000;
 104 mole = 602214076000000000000000;
 105 
 106 cup2l = 0.23658824;
 107 floz2l = 0.0295735295625;
 108 floz2ml = 29.5735295625;
 109 ft2m = 0.3048;
 110 gal2l = 3.785411784;
 111 in2cm = 2.54;
 112 lb2kg = 0.45359237;
 113 mi2km = 1.609344;
 114 mpg2kpl = 0.425143707;
 115 nmi2km = 1.852;
 116 oz2g = 28.349523125
 117 psi2pa = 6894.757293168;
 118 ton2kg = 907.18474;
 119 yd2m = 0.9144;
 120 
 121 ga2l = gal2l;
 122 nm2km = nmi2km;
 123 tn2kg = ton2kg;
 124 
 125 hour = 3600;
 126 day = 24 * hour;
 127 week = 7 * day;
 128 
 129 hr = hour;
 130 wk = week;
 131 
 132 define ftin(f, i) {
 133     return (0.3048 * f + 0.0254 * i);
 134 }
 135 
 136 define lboz(l, o) {
 137     return (0.45359237 * l + 0.028349523 * o);
 138 }
 139 
 140 define eu() {
 141     return (e(1));
 142 }
 143 
 144 define euler() {
 145     return (e(1));
 146 }
 147 
 148 define pi() {
 149     return (4*a(1));
 150 }
 151 
 152 define tau() {
 153     return (8*a(1));
 154 }
 155 
 156 define deg(x) {
 157     return (180 * x / pi());
 158 }
 159 
 160 define rad(x) {
 161     return (pi() * x / 180);
 162 }
 163 
 164 define abs(x) {
 165     if (x >= 0) return (x);
 166     return (-x);
 167 }
 168 
 169 define exp(x) {
 170     return (e(x));
 171 }
 172 
 173 define j0(x) {
 174     return (j(0, x));
 175 }
 176 
 177 define j1(x) {
 178     return (j(1, x));
 179 }
 180 
 181 define ln(x) {
 182     return (l(x));
 183 }
 184 
 185 define log(x) {
 186     return (l(x));
 187 }
 188 
 189 # define log2(x) {
 190 #     return (l(x) / l(2));
 191 # }
 192 
 193 define log2(x) {
 194     auto r, n;
 195     if (x <= 0) return (l(x) / l(2));
 196 
 197     r = 0;
 198     for (n = x; n > 1; n /= 2) r += 1;
 199 
 200     if (n == 1) return (r);
 201     return (l(x) / l(2));
 202 }
 203 
 204 # define log10(x) {
 205 #     return (l(x) / l(10));
 206 # }
 207 
 208 define log10(x) {
 209     auto r, n;
 210     if (x <= 0) return (l(x) / l(10));
 211 
 212     r = 0;
 213     for (n = x; n > 1; n /= 10) r += 1;
 214 
 215     if (n == 1) return (r);
 216     return (l(x) / l(10));
 217 }
 218 
 219 define sin(x) {
 220     return (s(x));
 221 }
 222 
 223 define cos(x) {
 224     return (c(x));
 225 }
 226 
 227 define tan(x) {
 228     return (s(x) / c(x));
 229 }
 230 
 231 define cot(x) {
 232     return (c(x) / s(x));
 233 }
 234 
 235 define atan(x) {
 236     return (a(x));
 237 }
 238 
 239 define sinh(x) {
 240     return ((e(x) - e(-x)) / 2);
 241 }
 242 
 243 define cosh(x) {
 244     return ((e(x) + e(-x)) / 2);
 245 }
 246 
 247 define tanh(x) {
 248     return ((e(x) - e(-x)) / (e(x) + e(-x)));
 249 }
 250 
 251 define coth(x) {
 252     return ((e(x) + e(-x)) / (e(x) - e(-x)));
 253 }
 254 
 255 define hypot(x, y) {
 256     return (sqrt(x*x + y*y));
 257 }
 258 
 259 define sinc(x) {
 260     if (x == 0) return (1);
 261     return (s(x) / x);
 262 }
 263 
 264 define min(x, y) {
 265     if (x <= y) return (x);
 266     return (y);
 267 }
 268 
 269 define max(x, y) {
 270     if (x >= y) return (x);
 271     return (y);
 272 }
 273 
 274 define mod(x, y) {
 275     auto s, m;
 276     s = scale;
 277     scale = 0;
 278     m = x % y;
 279     scale = s;
 280     return (m);
 281 }
 282 
 283 define mod1(x) {
 284     return (mod(x, 1));
 285 }
 286 
 287 define modf(x) {
 288     return (mod(x, 1));
 289 }
 290 
 291 define round0(x) {
 292     auto i;
 293     i = x - mod(x, 1);
 294     if (x - i >= 0.5) {
 295         return (i + 1);
 296     }
 297     return (i);
 298 }
 299 
 300 define round(x, d) {
 301     auto k;
 302     k = 10^d;
 303     return (round0(x * k) / k);
 304 }
 305 
 306 define r(x, d) {
 307     return (round(x, d));
 308 }
 309 
 310 define r0(x) {
 311     return (round0(x));
 312 }
 313 
 314 define fac(x) {
 315     auto f, i;
 316     if (x < 0) return (0);
 317     f = 1;
 318     for (i = x; i >= 2; i--) { f *= i; }
 319     return (f);
 320 }
 321 
 322 define f(x) {
 323     return (fac(x));
 324 }
 325 
 326 define fact(x) {
 327     return (fac(x));
 328 }
 329 
 330 define factorial(x) {
 331     return (fac(x));
 332 }
 333 
 334 define per(n, k) {
 335     auto p, i;
 336     if (n < k) return (0);
 337     p = 1;
 338     for (i = n; i >= n - k + 1; i--) { p *= i; }
 339     return (p);
 340 }
 341 
 342 define p(n, k) {
 343     return (per(n, k));
 344 }
 345 
 346 define perm(n, k) {
 347     return (per(n, k));
 348 }
 349 
 350 define com(n, k) {
 351     if (n < k) return (0);
 352     return (per(n, k) / fac(k));
 353 }
 354 
 355 define comb(n, k) {
 356     return (com(n, k));
 357 }
 358 
 359 define gcd(x, y) {
 360     return (x * y / lcm(x, y));
 361 }
 362 
 363 define lcm(x, y) {
 364     auto a, b, z;
 365 
 366     /* the LCM is defined only for positive integers */
 367     # if (mod(x, 1) != 0 || x < 1 || mod(y, 1) != 0 || y < 1) { return 0; }
 368     # if (mod(x, 1) != 0) return (0);
 369     if (x < 1) return (0);
 370     # if (mod(y, 1) != 0) return (0);
 371     if (y < 1) return (0);
 372 
 373     a = min(x, y);
 374     b = max(x, y);
 375 
 376     z = b;
 377     while (mod(z, a) != 0) { z += b; }
 378     return (z);
 379 }
 380 
 381 define sgn(x) {
 382     if (x > 0) return (1);
 383     if (x < 0) return (-1);
 384     return (0);
 385 }
 386 
 387 define sign(x) {
 388     return (sgn(x));
 389 }
 390 
 391 define logistic(x) {
 392     return (1 / (1 + e(-x)));
 393 }
 394 
 395 $(echo "${arg}" | sed 's-^+--g; s-_--g; s-\*\*-^-g; s-\[-(-g; s-\]-)-g')
 396 ENDOFSCRIPT
 397 
 398 done |
 399 # ensure the result shows at least a zero before the decimal dot, then
 400 # rid the result of trailing zero decimals and/or trailing decimal dots
 401 sed -E 's-^\.-0.-; s/^-\./-0./; s-(\.[0-9]+[1-9]+)0+$-\1-; s-\.0*$--'